
AD-A26 9 671

Learning by Experimentation:
Incremental Refinement of

Incomplete Planning Domains
Yolanda Gil

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, California 90292

April 1993
ISI/RR-93-338

OTIC
ELECTE

S EP2Z 19g3

- U.

INFORMA TION

SCIENCES

INSTITUTE -a.-- a-a",

46,76 41 rahl li j fIana J0 RcWC at'i.7orwa

Learning by Experimentation:
SIncremental Refinement of

Incomplete Planning Domains
Yolanda Gil

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, California 90292

April 1993
SISI/RR-93-338

* Acce~k1.: For

NTIS Cft
DTIC

..... ..T -~-----------

I;' ~valeability Codesrm nttin

[Aai an Ioad oil

40

I 67Ami

Public reporting burden lot this coliection of informatin is estimated to average 1 hour per response, including the time tor reviewing Imalnictions. seatching eitting data
sources, gatheitno m intaii the data needed, and completing and reviewing the colleclion of information. Send comments regaerding this burden estimated or any

othr apec ofVibcolecton f Idoretln. ncld2n sugg estings for reducing this burden to Vishlngton Headquarters Services. Directorate for Information Operations
and Reports, 1216 Jefferson Davis highway, Sudts 12 ,A inglon. VA 22202-4302. and to the Office of management and Sudgel. Paperworli Redu~ction Project (0706-0111),
Wuahinglon, DC 20603.

- 1. AGENCY USE ONLY (Leave blank) I2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IJanuary 1993 Research Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Learning by Experimentation: Incremental Refinement of Incomplete Plan- F33615-90-C-1465
ing Domains

S. AUTHOR(S)

Yolanda Gil

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON

UJSC INFORMAT10N SCIENCES INSTI-1TUEREOTNMR
4676 ADMIRALTY W'XY R -3
MARINA DEL REY, CA 90292-6695 R-3

9. SPONSORAINGIMONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING

Avionics Laboratory, Wright Research and Development Center AGENCY REPORT NUMBER

* Aeronautical Systems Division. U.S. Air Force. Wright Patterson
Wright-Patterson AFB, Ohio 45433

11. SUPPLEMENTARY NOTES

12A. DISTRIBUTIOC/AVAILABILITY STATEMENT 12P DIST'flBUTION CODE

UNCLASSIFIEDILTNIM IT~T)
13. ABSTRACT (Maximum 200 words)

Building a knowledge base requires iterative refinement to correct imperfections that keep lurking after each new vers ion of the
* system. This paper concentrates on the automatic refinement of incomfplete domain models for planning systems, presenting both

a methodology for addressing the problem and empirical results obtained from an implemented system in several domains when
initial domain knowledge is up 50%7 incomplete. Planing knowledge inay he refilned automatically through direct interaction with
their environment. Missing conditions cause unreliable predictions. ol action outcomes. Missing effects cause unreliable predic-
tions of facts about the state. The paper shows that. contrary to popular belief, missing iiiforrnafion is not necessarily associated
with execution failures. We present approach based on continues and selective interaction with the environment that pinpoint% the
type of fault in the domain knowledge that causes any unexpected behavior of the environment, and resorts to experimentation
when additional information is needed to correct fault. Our approach has been implemented in EXPO, a system that uses PROD-
IGY as a baseline planner and improves its domain knowledge in several domains. The empirical results presented show that
EXPO dramatically improves its prediction accuracy and reduces the amount of unreliable action outcomes.

* 14. SUBJECT TERMS 1S. NUMBER OF PAGES

planning, learning, experimentation, theory, refinement, incomplete theories 111

16. PRICE CODE

* 17. SECURITY CLASSIFICTION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED IJNCLASSITIILD UNCLASSIFIED LLMT

NSN 7540-01-211&6500 Ilandard form 229 (Rev. 249)
Proscribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) Is used in announcing and cataloging reoprts. It is important
that this Information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling In each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.

Block 2. Report Date. Full publication date Denotes public availability or limitations. Cite any

Including day, month,a nd year, if available (e.g. I availability to the public. Enter additional

jan 88). Must cite at least the year. limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 87 - 30 Jun 88). Documents."

Block 4. Title and Subtitle. A title is taken from DOE - See authorities.
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningf.u! ,ri complete information. When a NTIS Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number, and Block 12b. Distribution Code.
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Leave blank.
in parentheses. DOE - Enter DOE distribution categories

Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical

element numbers(s), project number(s), task Reports.
number(s), and work unit number(s). Use the NASA - Leave blank.
following labels: NTIS - Leave blank.

C - Contract PR - Project Block 13. Abstract. Include a brief (MaximumG - Grant TA -Task Bok1.Asrc.Icueabif(aiu
PE - Program WU T Work Unit 200 words) factual summary of the mostElement Accession No. significant information contained in the report.

Block 6. Author(s). Name(s) of person(s) Block 14. Subject Terms. Keywords or phrases
responsible for writing the report, performing Block m. subjectT s. K e report.
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.

,Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price
Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.-19. Security Classifications. Self-
performing the repor. explanatory. Enter U.S. Security Classification in

Block 9. Sponsoring/Monitoring Agency Names(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory UNCLASSIFIED). If form contins classified

Block 10. Sponsoring/Monitoring Agency information, stamp classification on the top and

.Report Number. (If known) bottom of the page.

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
Information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of ...; To be abstract. Enter either UL (unlimited) or SAR (same
published in... When a report Is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

Standard, r -'m 298 Back (Rev. 2-B9,1

Learning by Experimentation: Incremental
Refinement of Incomplete Planning Domains

Yolanda Gil
Information Sciences Institute. USC

4676 Admiralty Way
Marina del Rev, CA 90292

(310) 822-1511
git'Aisi.edu

Abstract

Building a knowledge base requires iterative refinement to correct imperfections
that keep lurking after each new version of the system. This paper concentrates on the
automatic refinement of incomplete domain models for planning systems, presenting
both a methodology for addressing the problem and empirical results obtained from an
implemented system in several domains when initial domain knowledge is up to 50%
incomplete. Planning knowledge may be refined automatically through direct interac-
tion with their environment. Missing conditions cause unreliable predictions of action
outcomes. Missing effects cause unreliable predictions of facts about the state. The
paper shows that. contrary to popular belief, missing information is not necessarily
associated with execution failures. We present a practical approach based on continu-
ous and selective interaction with the environment that pinpoints the type of fault in
the domain knowledge that causes any unexpected behavior of the environment. and
resorts to experimentation when additional infornation is needed to correct the fault.
Our approach has been implemented in EXPO. a system that uses PRODIGY as a
baseline planner and improves its domain knowledge in several domains. The empirical
results presented show that EXPO dramatically improves its prediction accuracy and
reduces the amount of unreliable action outcomes.

1 Introduction

Building a knowledge base is a process that requires iteration to correct c

rors that keep lurking after each new version of the system. Several ty;

of imperfections can appear simultaneously in any type of domain theory. -

cluding incompleteness, incorrectness, and intractability [Mitchell et al., 56;

Rajamoney and DeJong, 1987; Huffman et al., 1992]. In an EBL system, for

example, the rules of the theory are used to compose explanations and an

imperfect theory may greatly impair the system's ability to build those ex-

planations. In fact, EBL systems are very brittle with respect to errors in

the domain theory, and a lot of the research in EBL concentrates on either

correcting them or making the system more robust [Danyluk, 1991: Hall. 1988:

Rajarnoney, 1988]. There is a well developed framework to classify these errors

and understand how they affect the explanation process [Mitchell ct al., 1986:

Rajamonev and DeJong, 1987].

In a planning system, the inaccuracies of the knowlege base may rend prob-

lems unsolvable or produce plans that yield unsuccessful executions. However,

there is not a good basis for understanding in which particular ways the dif-

ferent types of faults in a domain theory affect the planner's performance.

Exploring this issue should provide a good framework for understanding and

evaluating systems that learn planning domain knowledge. In this paper, we

concentrate on the problematic of missing domain knowledge, which is tech-

nically known as incompleteness. Known operators may be missing precon-

ditions and/or effects, or entire operators may be absent from the domain

model. We describe the limitations of the capabilities of a planner in terms

of the types of incompleteness of its domain knowledge. The imperfections of

the domain knowledge have been closely related to planning and/or execution

failures [llaminond, 1986; Huffman et al.. 1992], but we show in our discussion

that this is not necessarily the case.

The rest of this paper presents a sumnmary and empirical results of our work

on autonomous refinement of incomplete planning domains [Carbonell and Gil,

1990" Gii, 1991a; Gil, 19921. Learning is selective and task-directed: it is trig-

gered only when the missing knowledge is needed to achieve the task at hand.

Our approach is based on continuous and selective interaction with the envi-

ronment that leads to identifying the type of fault in the domain knowledge

that causes any unexpected behavior of the environment, and resorts to ex-

perimentation when additional information is needed to correct the fault. The

new knowledge learned by experimentation is incorporated into the domain

and is immediately available to the planner. The planner in turn provides

a performance element to measure any' improvements in the knowledge base.

This is a closed-loop integration of planning and learning by experimentation.

Research in the area of acquiring action models is mostly subsymbolic [Ma-

hadevan and Connell, 1992; Maes, 1991]. An important component of our

approach is the ability to design experiments to gather additional information

that is not available to the learner and yet is needed to acquire the miss-

ing knowledge. Experimentation is vital for effective learning and is a very

powerful tool to refine scientific theories [Cheng, 1990; Rajamoney, 1988], but

current research on learning planning knowledge from the environment does

not address this issue directly [Shen. 1989; Kedar ct al., 19911.

The approach has been implemented in a system called EXPO. EXPO's

underlying planning architecture is the PRODIGY system [Minton ct al.. 1989;

Carbonell et al., 1991] which provides a robust, expressive, and efficient plan-

ner. The examples included in this paper are based on a robot planning domain

(Gil, 19921, but results are also shown for a complex process planning domain

[Gil, 1991b].

The paper is organized as follows. Section 2 presents a taxonomy of how in-
0 complete domain knowledge can affect the performance of a planning system.

Section 3 describes our approach to the automatic refinement of incomplete

planning domains and its implementation in EXPO. Finally, the empirical

0

0

0

results presented in Section 4 show that EXPO dramatically improves its pre- 0

diction accuracy and reduces the amount of unreliable action outcomes.

2 Planning with Incomplete Models

This section groups the effects of incompleteness in planning domains in three 0

categories: unreliable action outcomes, unreliable predicate beliefs, and unre-

liable coverage of the search space.

2.1 Unreliable Action Outcomes 0

Suppose that a planner is given the following incomplete operator:
(OPEN I

(params (<door>))
(preconds

(and 0
(is-door <door>)

;the condition (unlocked <door>) is missing

(next-to robot <door>)
(dr-closed <door>)

(effects (
(del (dr-closed <door>))
(add (dr-open <door>))

OPEN' is incomplete: it is missing the condition (unlocked <door>). If the

planner uses OPEN' to open an unlocked door, the execution will be successful. 0

If the planner uses OPEN' to open a door that happens to be locked, the action

will have no effect. In this case, the planner made the wrong prediction of the

outcome of the action execution: that the door would be open. So if the

preconditions of an operator are incomplete, the planner's predictions of the

operator's outcome are unreliable, because the desired effects of the operator

may or may not be obtained. The success or failure of the action's execution

is thus beyond the planner's control, and it depends solely on the chances that

the unknown conditions happen to be true. Notice that an execution failure

is not necessarily obtained, since the missing conditions may happen to be

satisfied.

3

Missing conditions of context-dependent effects also cause unreliable action

outcomes, since the planner cannot predict when the effect will take place.

2.2 Unreliable Predicate Beliefs

Consider the following incomplete operator:

(PUTDOWN-NEXT-TO'

(params (<ob>))
(preconds

(and (holding <ob>)
(next-to robot <other-ob>)))

(effects

((add (arm-empty))

;the effect (del (holding <ob>)) is missing
(add (next-to <ob> <another-ob)))))

If the planner uses this action to put down an object, the action's execu-

tion will be reliable: the desired effects of the operator will be obtained. Tile

planner will only notice the change in the status of holding at this point if

it is monitoring the environment beyond the known effects. Although it may

be possible in some applications [Kedar et at., 1991; Shen, 1989), continu-

ously monitoring the status of all the known facts is highly impractical in real

domains, and furthermore it is not very cost-effective.

However, the planner may notice this change in the future. Suppose that it

continues executing actions successfully. Now it wants to put the same object

(lown again. Since it behieves to be still holding die object i' L.onsiders this

operator to put the object down. It is now that the planner notices that the

truth value of the predicate (holding obj) changed inadvertently. It is the

truth value of a predicv-te that is unreliable, not the action's outcome. The

action of putting down is reliable since the planner can predict the outcome

of the action for any object that it is holding.

Notice that although the planner's 1)rediction of the truth value of the pred-

icate failed, in this case the planner does not obtain an execution failure. A

missing effect is often mistakenly associated with an execution failure [Ham-

rnond, 1986; lluffman ti al., 19921, probably because of its negative implica-

tion: the planner needs to patch the plan and achieve the desired value of the

predicate. In our example, holding needs to be reachieved. However, this is

not necessarily the case. Incomplete effects may also cause the elimination of

unnecessary subplans that achieve a goal that is already satisfied in the worl(.

as we illustrate in the following example. S

Consider the following operator:

(PUTDOWN-NEXT-TO"
(params (<ob>))
(preconds

(and (holding <ob>)
(next-to robot <other-ob>)))

(effects

((add (arm-empty))
(del (holding <ob>)))))

;the effect (add (next-to <ob> <another-ob)) is missing

Now suppose that the goal is not to hold a key and to have it next to a cer-

tain box. The planner uses PUTDOWN-NEXT-TO" to achieve not holding

the key, and then PUSH-OBJ to put the key next to the box. The planner is

unaware that PUTDOWN-NEXT-TO" actually achieves both subgoals. and •

that PUSH-OBJ is thus an unnecessary subplan (provided that the subplan is

not needed to achieve other goals). When the planner notices that the truth

value of next-to was changed inadvertently, it can eliminate the unneces-

sary subplan. In this case. the unreliable prediction did not haIr aQ2!1l ncqatiVi S

implication for the planner: it even saved some extra work.

2.3 Unreliable Coverage of Search Space

The two previous sections describe how missing conditions and effects case

undesirable behavior during plan excuiation. Incomplete domains niav also

cause unreliable coverage of the search space. Notice that this would cause

complications at problem solving time. riot execution time.

('onsider t lie case of a missing operator. If there are no alternative operators

to use during the search, then problems may have no solution (even though

they would be solvable if the complete domain were available to the planner).

5

2).

For example, if O t EN is missing from the domain then no other o perat(or woiIlId

achieve the ,,jal of opening a door. which would cause all the problems that

include this subgoal to have no solution. The same type of behavior occurs if

the missing effects of an operator were to be used for subgoaling. Consider for

example that the domain included an operator OPEN that is missing the effect

(add (dr-open <door>)). Any problem that causes subgoaling on opening

a door would have no solution.

Notice that in the previous section the missing effects caused different com-

plications. They did not preclude the operator from being part of a planl.

since some other known effect of the operator allowed its use for su b)oalii.

So as long as some primary effect of each operator is known to the planner.

the missing effects could he detected as described in the previous section.

Another case of incompleteness occurs when a state is missing facts about

the world. For example, consider a state containing a description of a door

Door45 that connects Room4 and Room5. The state does not contain infor-

mation about the door being either locked or unlocked. In this case, some

operator's preconditions cannot be matched in the state. For example. OPEN

has a precondition that the door must be unlocked. and the planner cannot

consider using it for opening Door45. So when facts are missing from the state.

lhe applicab)ilitv of operators is restricted to lhe known facts amdt hus it may

not be possible to explore parts of the search space until more infornmation

becomes available.

2.4 Summary

Figure 1 summarizes the taxonomy of limitations of a planner caused by incoin-

plete domain knowledge. Missing conditions cause action execution failures.
If the missi micondition is identified, a plan is needed to achieve it before I he

action can be v'xecuted su ces sfu]lv .Missin i. si h" effects may cause ,'iii iter un-

necessary suhbplans or additionia planning. but t lfev do mo t Ca 1ise ,ecuit ion

what is misszng what it may cause when noticed how noticed
preconditions action execution failure plan execution unreiiable action outcornes
conditions of followed by
context-dependent effects plan repair
effects unnecessary subplans plan execution unreliable predicate beIliefs
not needed for subgoaling or plan repair I
effects unreliable coverage problem solving I problems without solution
needed for subgoaling of search spacetoperators
predicate beliefs

Figure 1: Limitations Caused by Incomplete Domain Knowledge in a Planner.

failure-- Missing primary effects. operators. or data about the state may cause

that some problenis have no solution (even though they would be solvable if

Ile conmplete domain were available to the planner).

3 Incremental Refinement of Planning Domains
through Experimentation

When users define operators for a planning system. the resulting operators

turn out to be operational for planning (i.e., the planner has some model of

the actions that it can use to build plans) but are incomplete in that users often

forget to inclide unusual preconditions or side effects. This section presents

our approach to the problem of refining p)lanning domains th,•t are incomplete

because they are missing operator's p)reconditions and effects. lore details

can be found in [Gil, 1992: Gil. 1991a: Carbonell and Gil. 1990].

3.1 Detection of an Imperfection

A planner's abilitv to interact with its environment allows the detection of

knowledve faults. EXPO monitors the external world slectively and contin-

touslil. Before lhe execution of an operator. EXPO expects the operator's

known precon(litions to be satisfied, so it checks; them in the external worlh. 0

If thev are indeed satisfied. Ilhen EIXXPO executes the corresponding action.

The operator's known effects are now expected to have occurred in the world.

70

* ~so EXPO checks thern in the Internal world. Any time that the ob~servationis

disagree with the expectations. EXPO signals an imnperfectioii and learning

t rigge red.

3.2 Operator Refinement

EXPO ulses thle Operator Refinement Method [Carbonell and 01i. 1990] to

learn new preconditions and effects of operators. We briefly (describe now the

implementation of this method Iin EXPO.

Acquiring New Preconditions

\Vhiei anl operator 0 execlite(1 in state S~ has aii iunpredlicted out comfi. EXP()

Considers t li working hypothesis that the preconditions of 0 are I ncomliplete

anid triggers learning to findl oult the in issin~g condi tioin C. C jiiist have,(been

true (by coincidence) every time that 0 was execuiteol before. ýX P0 keeps

track of every state Iin which each operator is execuited. It. looks upl So. a

gceneralization of all the states in which 0 was successfully execuited Iin the

past.' A-ll the predicates in So are considered potential precondItitons of 0.

(Notice that thle currently known p)reconditions of 0 must be Iin So). E1XP()

lien engages anl experimentation p~rocess to discern which of those predicates

* ~is t he m lissiiig Condition.

lBecauise of the bias needed Iin the generalizat ion of th le miissi ng condi -

lIIon may not ippeilr in So. If t his is h le case, none of the experi menits wvoui d

b~e successfil. EXI)0 then wouild retrieve any% successfufl p)ast application of

0.1 SýI, and builds a new set of candlidate preconditions with the (differenices

between . iind S,, If experimentation is niot 51 uccessfiul In tIilis stage. tlhe

ciirreait. imienipeentation of EX P0 prompts, the user for hielp. hleailyl. It wvon 1(

0look for adldit ioniia candidiahtes (for example. preiTical es thait are niot. incluided

ill the stalte Ký I cau iselichy were iiev'r)l serv-ed . anil even (oisidr- tlie alt er-

'The gonviralizai ion of states is done t hrouagh itle operator's bindJings andi uses a versionl

,p;are Irtinework.,

08

native working hypothesis that 0 has conditional effects (instead of missing a

precondition).

Previous work on refinement of left-hand sides (LHS) of rules has used th(

concept learning paradigm in considering each LILS as a generalization of states

where the rule is applicable [Mitchell, 1978; Mitchell ct al., 1983: Langley.

1987]. However, EXPO uses this paradigm as a heuristic that guides the

search for a new condition, and not as a basis for finding it. EXPO uses

other heuristics to make the experimentation process more efficient. This is

described in detail in [Gil, 1991a: Gil, 1992].

Acquiring New Effects

When a predicate P is found to have an unpredicted value. LX XPO considers

the working hypothesis that some operator that was applied since tlie last

time P was observed had the unknown effect of changing P. EXPO retrieves

all operators executed since then, and considers them candidates for having

incomplete effects. Experiments with each operator monitoring P closely yield

the incomplete operator.

3.3 Summary

Figure 2 summarizes learning by experimentation in EXPO. 1- XPO trringers

learning when something unpredicted happens. and focuses on experiments

that find the missing information that vields the correct predict ioi. Exper-

imentation is task-directed: always engaged within a particular context that

sets specific aims and purpose for what is to be learned. See [0il. 1991a: (;il.

1992] for more particulars on the experiments themselves.

4 Empirical Results

This section contains results that show the effectiveness of FX P(. i.e. that

it, canl indeed he used to acvuire new knowledge that is useful to ifi problhemi

solver.

what is worktng candidates state before operator in observations
nohtced hypothesis experiment experiment in experiment

before I after

unreliable 0 is missing Predicates t, Preconditions 0 -- effects
outcome some condition that were true of 0 and of 0
of 0 in previous some P, are

executions of 0 satisfied
unreliable P is an Operators Oi Preconditions 0, ' .. 13

belief effect of some executed since of some Oi
of P operator last time P are satisfied

was observed

Figure 2: Learning by Experimentation.

The results presented in this section show EXPO learning in two different

domains: a robot planning domain and a complex process 1)lani1initi domain.

The robot p)lanning domain is an extension of the one used by STI-RIPS that has

been used in other learning research in PRODIGY (see [Carbonell 0t al.. 19911

for references). The process planning domain contains a large body of knowl-

edge about the operations necessary to machine and finish metal parts [Gil.

199Ibi, and was chosen because of its large size. The domains are compared

along some dimensions in Figure 3. [Gil, 19921 describes them in detail.

robot planning I process planninyq

number of rules 14 120

average number of preconditions I S I.
average number of effects] 1
number of predicates 311 93 I

number of object types -7 3T i
Figure 3: The robot planning and the process planning domains.

We want to control the degree of incompleteness of a domain in the tests.

We have available a complete doinain D which has all the operators with all

their correspondifg conditions andl effects. \\With this complele doma in. We

can art.ificiallv prodiice domains 0)' that hi ave certain l)(rcentage of iTIconu -

pletcness (i.e.. 20'/, of the preconditions are missing) hv radlotilv reinovinti

10

preconditions or effects from D. \We will use D',,, to denote a domain that is

incomplete and is missing 20% of the conditions. D'0o,,20 is a domain missing

20% of the postconditions. Notice that EXPO never has access to D. only to

some incomplete domain D'.

EXPO learns new conditions and effects of incomplete operators. What

is a good measure of the amount of new knowledge acquired by EXPO iII

each case? Missing preconditions may cause action execution failures. To

show that EXPO is effectively learning new preconditions. we run the test

set several times during training. \Ve compared the cumulative number of

wrong predictions during training with the number of problems in the test

set that could be executed successfully to completion. Missing effects may

cause wrong predictions of literals. \Ve compared the cumulative number of

incorrect literals found during training with the number of incorrect literals

in the final state of the problems in the test set. Each wrong prediction

encountered during training, is an opportunity for learning. At certain points

during learning, we run the test set. Learning is turned off at test time, so

when a wrong prediction is found the internal state is corrected to reflect the

observations but no learning occurs.

Training set and test set were generated randomly, and they were indepen-

dent in all cases.

4.1 Results

Figures 4(a) and 5(a) show the number of action execution failures that EXPO

detects during training with D'r,,20 and Drrc50 respectively in the robot plan-

ning domain. Figures 4(b) and 5(b) show how many solutions for problems in

the test set were successfully executed with D'rc2o and D,,,,s0 respectively.

"File number of plans that PROI(,N;Y is able to execute correctly increases with

[earnin,_y..

The in axi m11 1i nun mher of urnexpected action outcomes. indicated by the up-

0

II0

Tra-n-n9 Problem

(a) Cumulative number of unexpected action outcomes during training

* 4z

0C Ic0 4C
Tra-n-9 Probin'

(b) Number of plans successfully executed in the test set
0

Figure 4: Effectiveness of EXPO in the robot planning domain with 20%
of the preconditions missing (D'pre20). (a) Cumulative number of unexpected
action outcomes in the execution of solutions to training problems encountered
by EXPO as the size of the training set increases. Each one presents an

* opportunity for learning. (b) The number of plans successfully executed in the
test set increases as EXPO learns. The number of additional plans successfully
executed is indicative of the amount of preconditions acquired by EXPO.

per limit of the y-axis, corresponds to learning all the missing preconditions.

For D',r 20 1 notice that although EXPO does not acquire all the missing do-

main knowledge, it has learned the knowledge necessary to execute successfully

the solutions to all the problems in the test set. In fact, after training with 40

problems EXPO can solve all the problems in the test set. Even though EXPO

learns new conditions with further training they do not. cause any improvement

in the performance. For Dprec•t) very few solutions to the test problems are

executed successfully in one case. This is because tie situationis enicounItered

12

-,

--

2 a 2 0 40 00 nO
Or o gPrbl oR

(a) Cumulative number of unexpected action outcomes during training

S 5 ,, l- ---- - - - -

0 -

Training Pr-bl'1et

(b) Number of plans successfully executed in thle test set

Figure 5: Effectiveness of EXPO in the robot planning domnain with 50% of
the preconditions missing (D,,,,50).

during training do not cover the situations encountered in the test problems

in that the knowledge needed to solve the test problems is not needed to solve

the training problems. (InI fact. after training with the test set One more new

condition is learned which turns out to be common in thle. test set and thus

the solutions to all thle test p~rolblems can lbe successfully executed).

In thle process p)lanning dlomain, the tests were run in dlomains with 10% and

/C0 incompleteness using two training sets and two test sets. Figures 6 and 7

peetresults for D', an ecD, respectively when EXPO) acquires new

preconditions. Even though this is a more complex (domain. the curves show

results very similar to the results obtained for the robot. planning (domain.

WVe also ran I ests with domains where postcoId Iti]n OTI f Operators were mis

13

0

0 16

12

0 --- - -------,
S 1

S 4 TraIn IS~~Train 2 -

S 2

0 10 2Z 30 do 50 60 70 80 90 100
"ra nng Probl I

(a) Cumulative number of unexpected action outcomes during training

*20

0 10 20 30 40 50 60 70 80 90 100
Traionlng Probl eM

(b) Number of plans successfully executed in the test set

Figure 6: Effectiveness of EXPO in the process planning domain with 10% of
the preconditions missing (D'P,,, 0). Two training sets and two test sets were
used.

ing. Figures 8 and 9 show the results for D'ot,0 and D,0 .,50 respectively ill

the robot planning domain. As more incorrect literals are found in the state.

EXPO acquires new effects of operators. Thus. the number of incorrectly

predicted literals when running the test set is reduced continuously.

0
4.2 Discussion

The new preconditions and postconditions learned through EXPO improve

PRODIGY's performance by reducing the amount of wrong predictions during
0 1plan execution. The effectiveness of learning is not solely a characteristic of

the learning algorithm: it is heavily dependent on the situations presented

to EXPO (during training. If the training problems cover situations that are

0

1*1

40

0 0 20 -0 40 -0 60 --0 8-0 -0 -

1'raiio ng.n Probl em.

(a) Cumulative number of unexpected action outcomes during training

20

* 14 p---:-- .
,• • Train I

0 10 20 30 40 50 60 70 80 90 100
Tr aiinq Problem.

(b) Number of plans successfully executed in the test d ea

Figure 7: Effectiveness of EXPO in the process planning domain with 30% of
the preconditions missing (D•rec30). Two training sets and two test sets were
used.

comparable to the ones in the test problemsT then learning is more effective.

Notice that this is expected of any learning system.
Another effect of the nature of the training problems is that EXPO rarely ac-

quires all the knowledge that is missing from the domain. However, PRODIGY's

(erformance is always improved, and in many cases all the test problems can

be executed successfully after learning even though the improved domain may

not be complete. EXPO is becoming increasingly more correct, because learn-

ing is dhirected to find the missing knowledge needed to solve the task at hand.
Even though an action may have many more conditions and effects than those

currently known, only the ones that are relevant to the current situation are

acNuirced. th XO shows that learning can improve a systems performance

15

3 4

0 0 20 30 40 30 40

Training Problems

(a) Cumulative number of incorrect literals found during training

50

:Z 42

20

,2 :5

0 io 20 30 40 s0 .0

Training Problems

(b) Incorrect literals in the final state of test problems

Figure 8: Acquisition of new effects in the robot planning domain with 20% of
the effects missing (D',08 t2o). (a) Cumulative number of incorrect literals found
in the internal state during the execution of training problems as the size of
the training set increases. Each one presents an opportunity for learning. (b)
The number of incorrect literals of the final state in the test set decreases as

EXPO learns. This is indicative of the amount of new effects of operators
acquired by EXPO.

and bring it to a point where it can function reasonably well with whatever

knowledge is available, be it a perfect model of the world or not.

Finally, EXPO is a proactive learning system. When a fault in the current

knowledge is detected, the information available to the learner may well be

insufficient for overcoming the fault. An important component of EXPO's

learning is the ability to design experiments to gather any additional informa-

l ion needed to acquire the missing knowledge. Work on learning theory has

shown that the active participation of the learner in selecting the situations

0

16

0

18

* 12

100

8

o 4

2

0 0 2 3 00 40 50 60
gr..n~nq Problems

(a) Cumulative number of incorrect literals found during training
60

S so

- 40

'5

30

- 2 0

0 0 20 30 40 50 40
?ta• n&nq Probl eM

(b) Incorrect literals in the final state of test problems

Figure 9: Acquisition of new effects in the robot planning domain with 507 0
of the effects missing (D'potso).

that it is exposed to is an important consideration for the design of effective

learning systems [Angluin, 1987]. •

5 Conclusions

Learning from the environment is a necessary capability of autonomous intel-

ligent agents that must solve tasks in the real world. Our approach combines

selective and continuous monitoring of the environment to detect knowledge

faults with directed manipulation through experiments that lead to the miss-

ing knowledge. The results presented in this paper show the effectiveness of

this approach to improve a planner's prediction accuracy and t.o reduce the

amount of unreliable action outcomes in several domains through the acquisi-

tion of new preconditions and effects of operators.

17

This work is applicable to a wide range of planning task. but there arc some

limitations. The state of the world must be describable with discrete-valued

features, and reliable observations must be available on demand. Actions must

be axiomatizable as deterministic operators in terms of those features.

Our work assumes an initially incomplete knowledge base. Future work

is needed to address other types of imperfections, including incompleteness.

incorrectness, and intractability of planning domain knowledge.

Acknowledgments

This research was supported by the Avionics Laboratory, Wright Research and

Development Center, Aeronautical Systems Division (AFSC). U.S. Air Force,

Wright-Patterson AFB. Ohio -51:33-6543 under Contract F33615-90-('-1.165,

ARPA Order No. 7597. The view and conclusions contained in this document

are those of the author and should not be interpreted as representing the official

policies, either expressed or implied, of DARPA or the U.S. government.

References

Angluin. Dana. 1987. Queries and concept learning. Machine Lcarning

2(4):319-342.

Carbonell, .Jaime G. and Yolanda ('il. 1990. Learning by experimentation:

The operator refinement method. In Machine Lcarning. A.nI Arlificial Il-

teltigence Approach, Volume III, ed. Y. Kodratoff and R. S. Michalski. San

Mateo, CA: Morgan Kaufmann.

Carbonell. Jaime G., Craig A. Knoblock, and Steven Minton. 1991. PRODIGY:

An integrated architecture for planning and learning. In Archilcctures for I?-

telliqenec. e(d. Kurt VanLehn. lHillsdale. N.J: Lawrence Erlbaum Associates.

('heng. Peter ('-ll. 1990. .Mlod~linq Scicntific)iscoivcry. Phi) thesis, The

Open lniversity. Milton Keynes. England.

II

DanvIuk. Andrea D. 1991. Extraction and Use of Contextual Attributes (if

Theory Completion: An Integration of Explanation- Based and Simizlarity-

Ba.' ed Learning. PhD thesis. Columbia University, New York. .NY.

Gil, Yolanda. 1391. A domain- independent framework for effective experi-

mentation in planning. In Proceedings of the Eight International Workshop

on Machine Leaning. Evanston. IL: 'Morgan Kaufmann.

Gil, Yolanda. 1991. A Specification of M~an ufact uring Processes for Plan ning.

Technical Report CMIJ-CS-91-179. School of Computer Science. Carne"'e0

Miellon UiniversitV.

Gil. Yolanda. 1992. Acquiring IDomnan A'nowudi(gc for Mlanning by Expcri-

inent ation. PhD thesis. Carnegie Mellon University. School of Computer0

Science.

Hall, Robert J. 1988. Learning by failure to explain: Using partial explanation

to learn in incomplete or intractable domains. M~achinr Learning :3(I):45-7 'S,.

Hlamfmond,. C'hris J. 1986. Case-based Planning: A-n Initegratcd The-ory of

Planning, Learning, and Memory. PhD thesis. Yale U niversity. New Haven.

('N.

II iffinan . Scott 1B.. Douglas J1. Pearson. and -John 1,_ Laird. '1992. ('rre-T In gý

imperfect. domain theories: A knowledge-level analysis. In Mlach inc Lea in-

irig: fInductoio. A1naloqy and DI'score ry. Boston. N;A: fIlluman Academic,

Press.

IKedar. Smnadar 'r.. join, L. Bresina. and C. Lisa D~ent. 1991 . The blind leading

the blindl: MIuttual refinement of approximate t heories. In P'rocce dings of the-

kLiqht .Alarhine trarning W~orkshop. ILvaiistoti. IL.

Langley. Pat. 1 987. A\ general t heory of dliscrimiinat ion learniinn. In Prodtictio n

SyStf 7m .1oddls of Learnizng and Dr re-lopin rit. (ailbridge. MIA: MIIT Press.

1 9

Maes. Pattie. 1991. Adaptive action selection. In Proceedings of th(Thirtcenth

Annual Conference of the Cognitive Science Society. (Chicago, IL.

Mahadevan, Sridhar and Jonathan Connell. 1992. Automatic programming of

behavior-based robots using reinforcement learning. Artificial Int eligenec

55(2-3):311-365.

Minton, Steve, Jaime G. Carbonell, Craig A. Knoblock. Dan R. Kuokka. Oren

Etzioni. and Yolanda Gil. 1989. Explanation-based learning: A\ problem

solving perspective. Artificial Intelligence 40(1-3):63-118.

MIitchell. 'TFol. PaullI !tgolf. and RIalian lBancrji. 1983. Learning1 by experi-

mientation: Acquiring and refining problem-solving, heiiristics. In Machil n t

Learning, .A n Artificial Intelligence Approach. IVolumc 1. Palo Alto. ('A:

Tioga Press.

Mitchell, Torn M. 1978. Version Spaces: An Approach to ('oncept Learning.

PhD thesis. Stanford University. Stanford. CA.

Mitchell, Tom M.. Richard M. Keller, and Smadar T. Kedar-Cabelli. 1986.

Explanation-based learning: A unifying view. Machin• Learning 1(1):47-80.

Rajamoney. Shankar .A\. 1988. Explanotion-Based Theory RI.evision: An ..tp-

proach to the Prohh772s of Incoiplhtr anid Incorrect 7Thori• s. PhI) thesis.

I niversitv of Illinois at Urbana-Champaign, U'rbana. IL.

Rajamonev. Shankar :\. and Gerald F. DeJong. 198S7. The clai.slication.

detection. and handling of imperfect theory problems. In 1rocrdinqs of

the TI rth int rnational loint ('o ufereT cr on Art ificial IInlelly1y7 ncc. .Milano.

Italy.

Shen. \\'i-Nin. 19. U 7arntinq fromn th El'ncirn-tot nt Ba ed on 1' rcpt.s

anid Actioins. P1hi) lhesis. School of ('ompiter S'icnce. (Carnegie .Mlellon

['niversity, Pittslurgh. PA.

20

